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Force-dependent unfolding rate
kK(F) as a function of force:
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Extracting information
from the experimental
traces
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The unfolding process is modelled
in 1D using Kramers Theory:
Single-well potential
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Effect of force on a general class Single-
of 1D free energy surfaces: molecule

G(x)=G(x)-Fx

Force lowers the
activation barrier

Energy surfaces that allows us
to calculate k(F), and the
probability distribution of

rupture forces p(F) analytically

Folded

Cossio, Hummer, Szabo. Biophysical Journal 111, 832-840 (2016). 10



Single- Kramers theory over free Energy

molecule surfaces:
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Extract information of the intrinsic
(F=0) free energy and dynamics
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Artifacts of the
apparatus



However, there are debates in the
field of atomic force spectroscopy...
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Single- In reality:
molecule
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Effects of apparatus:
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(and many more...)

What are the artifacts of the apparatus on
the measured rate of unfolding?

The conclusions vary from one
extreme where the effect is
negligible, to the other, where
the observed rates have little
to do with the dynamics of the
molecule of interest.

16



Single-

molecule

How does the measured rate compare to
the molecular rate (in the ideal case that

force could be applied directly to the
molecule)?



3 important time scales
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Output from the experiment:
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The molecular rate kM is hidden.

The simplest picture that captures the essential physics:
anisotropic 2D diffusion over the measured extension and
the hidden molecular extension.
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Single- » Using Lan% er’s Theory and following
molecule ref T, in the limit of high anisotropic
d1ffu510n (very slow apparatus)?:
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2 Cossio, Hummer, Szabo. Proc Natl Acad Sci U S A (2015).
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molecule

Use the analytical
expressions to know
in which regime the

system is.

Cossio, Hummer, Szabo.

Validation with 2D Brownian dynamics:
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Single- What about the transition
molecule paths?

Transition paths
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extension q(t)

Time Time (zoom x 103)



Single-

molecule measure transition paths with force
spectroscopy

Recently it was possible to directly

REPORT

Direct observation of transition paths during the folding of
proteins and nucleic acids

Krishna Neupane', Daniel A. N. Foster', Derek R. Dee’, Hao Yu', Feng Wang?, Michael T. Woodside' 2"
+ See all authors and affiliations

Science 08 Apr 2016:
Vol. 352, Issue 6282, pp. 239-242
DOI: 10.1126/science.aad0637

Fig. 2. Transition paths A
for a DNA hairpin. Se-
lection of transition paths
for (A) unfolding and (B)
refolding. Boundaries x;
and x, (cyan) demark
the barrier region.
Transition paths display a
wide variety of shapes
and transit times.

Extension
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Recently it was possible to directly
molecule measure transition paths with force

spectroscopy
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Fig. 2. Transition paths A
for a DNA hairpin. Se-
lection of transition paths
for (A) unfolding and (B)
refolding. Boundaries x1
and x» (cyan) demark
the barrier region.
Transition paths display a
wide variety of shapes
and transit times.
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The authors claimed that the transition path time
depends only on the molecule.



Single-

ol el Artifacts of the apparatus:

The transition

& paths are much
\,’ more affected by
' the slow diffusion
of the apparatus!
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molecule

Conclusions

Our theory provides accurate analytic

expressions to:

— extract information of the intrinsic free energy

and dynamics of the molecu
— assess the effects of the pul

e
ing device on the

unfolding transition rate anc

paths.
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