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Virus infection and spread are highly
challenging multiscale problems
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[Kumberger et al. FEBS Letters 2016]

Some general comments

* Viruses are probes of biological systems that might
exploit unknown biological functions that we now can
discover and understand

* Many aspects of viruses are accessible to biophysical
analysis, including
— Capsid structure, mechanics and assembly
— Virus transport and barrier crossing
— Population dynamics and epidemiology

* This talk:

— What is the role of geometry and noise for virus uptake ?
— How does HIV-1 spread in a complex environment ?

Analytical model for nanoparticle
and virus uptake

02.10.19



Nanoparticle uptake at the membrane
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Different approaches to describe
particle uptake at membranes

Analytical Numerical Computer simulations
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Here we take the analytical route and focus on the interplay between
particle geometry and fluctuations.

Effect of particle shape and size
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Viruses come in many different shapes and this will strongly affect
the uptake dynamics. Also they often carry only 10s of adhesion
receptors, potentially leading to stochastic effects.

[Frey, Ziebert and Schwarz PRL 2019]

Membrane Hamiltonian

Eou = — | WdA + / 2kH2dA + cAA
Aad Amem

The energy gain due to adhesion energy density W has to overcome
membrane bending (bending rigidity k, mean curvature H) and
surface tension c.

Balancing adhesion and bending for a sphere gives a critical
minimal radius for uptake:
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Membrane shape

Membrane shape can be calculated numerically from shape
equations. For spheres, there are two limiting cases which can be
solved analytically (Lionel Foret EPJE 2014).

. 25 kT
Typical membrane lengthscale: J— \/10 N =32nm

1. Loose membrane, R << A: bending dominates, minimal surface
2. Tense membrane, R >> A: tension dominates, flat

With R=10-100 nm, many viruses are in the intermediate regime.
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The free part can contribute up to 20% to the total energy for A/R=1
(green curve). This barrier can lead to partial uptake.

Equation of motion for sphere
(without free membrane)

Timescale is assumed to be set by the membrane microviscosity 1.
As dynamical variable we take the opening angle 0(t):

0 = Vyp — V(1 — cos 0)
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Deterministic uptake times
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Similar calculations as for the
sphere can also be done for the
other geometries. Normal
cylinder (rocket) performs best.
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For the sphere, the optimal radius
R+ (smallest uptake time) is close
to the critical radius Reit (N0
uptake at smaller radii).

One-step master equation

We map our deterministic model to a one-step master equation
through N = (dN/d6)6. Simulation with the Gillespie algorithm
gives a new phase diagram:
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In the stochastic case, uptake is possible for all parameter values.

It is also much faster now due to small system size.

Spherical particles profit from noise
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A spherical particle with R=180 nm and few surface receptors can
be taken up faster than a cylindrical particle of equal volume due

to the effect of noise.

Why are so many viruses spherical ?

* Sphere has largest volume at given surface
area, largest possible container for genome

* Caspar-Klug theory: icosahedral viruses need
minimal coding for capsomer proteins due to
guasi-equivalence

* Sphere has superior mechanical stability

* But: spheres are taken up slower then
cylinders !

* We showed here that spheres can profit from
stochastic noise in small systems
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Virus spread in complex environments

Emerging new paradigm: viruses often
spread through direct cell-cell contacts
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Traditional view: cell-free Alternative: spread through cell-
spread through virions in cell contacts, e.g. virological
solution synapse or tunneling nanotube

Spread of Human Immunodeficiency

Virus-1 (HIV-1) in long-term 3D cell culture
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Dense collagen is most efficient
but has a long time delay

[Imle et al. Nat Comms 2019]

Kinetic model
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Model result: in collagen transmission
occurs mainly through cell-to-cell mode
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7- and 4-fold higher probabilities for cell-to-cell transmission in loose
and dense collagen, respectively, compared to suspension

HIV-1 infected cells show very different
motilities at different collagen densities
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Both infection and dense collagen reduce motility.

Cellular Potts Model can represent
different collagen densities

Cellular Potts Model Live-cell microscopy
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CPM can recapitulate all microscopic
observations on motility
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Full model combines infection kinetics with
CPM and predicts contact times

Incorporating infection dynamics into CPM Contact:
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Conclusions

* Analytical model for virus uptake: spherical
viruses might be taken up faster than
cylindrical ones due to stochastic effects

* HIV-1 spread in 3D collagen: cell-cell contact
is the main mode of virus transmission in
complex cell environments like lymph nodes
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