

Heidelberg Institute for Theoretical Studies

Simulations of biomaterials under force [part I: Collagen] part II: Silk

Frauke Gräter, Bogota, 09/2019

Molecular Dynamics simulations: bonds can not rupture!

"Reactive" Molecular Dynamics: spontaneous chemical events on-the-fly

Monte Carlo methods

stochastic simulation methods, **sample randomly** to get obtain an approximate numerical result for a complex (high-dimensional?) problem

flavors:

- Monte Carlo integration
- Metropolis Monte Carlo
- Quantum Monte Carlo
- kinetic Monte Carlo

applications:

e.g. optimization, simulations of solids/molecules/polymers, weather, astro, finance, law,....

Monte Carlo methods: some history

- name was suggested by Metropolis, at Los Alamos National Laboratories for a method put forward by Fermi/Ulam
- used for calculations of neutron diffusion

Monte Carlo methods: some history

Earliest example:

Calculation of π by Laplace (based on the Buffon Experiment)

Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across a line between two strips?

n needles, h of them crossing the strips l length of needles t width of strips

$$\pi \approx \frac{2l \cdot n}{th}$$

wikipedia

Kinetic Monte Carlo

- Calculate different rates Γ_i
- Draw random number R between 0 and Γ_{tot}
- Carry out corresponding event
- Draw another random number T between 0 and Γ_{tot}
- Update time with $\Delta t = log(1/T)$

Advantages:

 any time scale reachable (lower rates just lead to higher time steps)

Disadvantages:

- jump in time: no continuous trajectory
- requires good guesses for rates

"Reactive" Molecular Dynamics: spontaneous chemical events on-the-fly

Rennekamp, Gräter, in review

It works: Rupture preferentially occurs around crosslinks

Conclusions:

YES: High loads on our collagen results in radicals

Move yourself! But only until it starts hurting...

Zapp*, Obarska-Kosinska* et al, in review

Order and disorder in silk

Strain and fracture: force distribution

conventional design tools: force distribution

in constructions, cars ...

macroscopic structures: meters our method: force distribution in (bio)molecules at atomistic level e.g. in graphene

1 nm

microscopic structures: $\sim 10^{-9}$ meters

W. Stacklies, et al, PLoS Comp Biol, 2009 Costescu et al, BMC Biophys, 2012

Forces from Molecular Dynamics simulations

Forces from Molecular Dynamics simulations

Mechanics of silk fibers

zigzag pattern of hydrogen bonds crucial for stabilization

How to predict mechanics on whole fiber scale?

All-atom will not work....

Our method: bottom-up multiscale simulations

Our method: bottom-up multiscale simulations

infer properties on macroscopic scale

derive properties on molecular scale

Refined bottom-up finite element model of silk fibers

- structural parameters from SAXS, SANS et
- mechanical parameters from a large set of Molecular Dynamics simulations: elastic moduli, shearing moduli, Poisson's ratio
- varied to test robustness
- validation by comparison with macroscopic silk mechanics

Xiao et al, BJ 2009 Cetinkaya et al, BJ 2011 Cetinkaya et al, PCCP 2011 Patil et al, PLoS One 2014 Patil et al, BJ 2014 Wagner et al, Sci Rep 2017

Refined bottom-up finite element model of silk fibers

bear in mind: this complex structure...

....now is nothing but a cube

Our first simple finite element model of silk

Our first simple finite element model of silk

Toughness depends on long-range order

Next step: towards more realistic visco-elastoplastic silk

3. interfacial friction

Next step: towards more realistic visco-elastoplastic silk

Patil et al, BJ 2014; Patil et al, PLoS One

Next step: towards more realistic visco-elastoplastic silk

	Our Simulations	Experiments by	Experiments by
	results	Denny(1976) [9]	$\operatorname{Gosline}(1999)$ [3]
Ultimate Strength(GPa)	0.5-0.671	0.7-1.3	1.08-1.61
Extensibility	0.32-0.36	0.23-0.45	0.27 - 0.40
Initial stiffness or	6.5-8.1	3.8-9.8	7.0-10.0
Post-yield stiffness(GPa)	1.1-1.7	1.5 - 5.1	N/R
$\rm Toughness(MJ/m^3)$	101-135	160	120-180
Hysteresis:	~70%	similar to experimental	

~70%

similar to experimental values for these strain rates Using this new model: self-ordering in spider silk fibers

Using this new model: self-ordering in spider silk fibers

Finite element model

cubes represent beta-sheet crystals, sizes/angles from scattering experiments

surrounded by soft amorphous matrix

Stretch-induced self-ordering: computational prediction

Stretch-induced self-ordering: confirmed by small angle neutron scattering

Stretch-induced self-ordering: confirmed by small angle neutron scattering

Stretch-induced self-ordering: confirmed by small angle neutron scattering

Toughness depends on long-range order

Stretch-induced self-ordering

Stretch-induced self-ordering: silk as a block copolymer

silk or block-copolymer

semi-crystalline polymer (e.g. polystyrene)

crystallizes into similarly-sized nanoparticles from (Ala)x crystallizes here and there and everywhere

Conclusions

MD simulations & Finite element analysis can in combination bridge scales

Quantitative predictions by simulations? Yes!

Molecular Biomechanics

Ana Herrera-Rodriguez Nicholas Maragakis Florian Franz Fabian Kutzki Christopher Zapp Agniezska Obarska-Kosinski Fan Jin Benedikt Rennekamp Isabel Martin Anna Schroeder

\$\$: Klaus Tschira foundation DFG, Volkswagen Foundation, AvH, Toyota

Form factor only

Model: How to calculate rupture rates?

Using Bell-Evans model for the potential and Arrhenius kinetics to calculate rupture rates; taking parameters for the potential from force field.

$$V(x) = D[1 - \exp(\beta(x - x_0))]^2$$
$$V_{eff} = V(x) - x \cdot V'(x_{curr})$$

$$\Delta E = V_{eff}(x_{max}) - V_{eff}(x_{min})$$
$$\Rightarrow k_{rupture} = A \cdot \exp(-\Delta E/k_B T)$$

10/2/19